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1 Introduction

Imaging and object identifications are the two integral parts used in several applications. One

example is the camera on a tra�c signal, identifying the numbers from the license plates. This

method generally works in broad light. The imaging is performed using a camera which collects

su�cient amount of light in the day and adequate enough from street lights at night, and the

object/character identification is performed computationally using character recognition. The

challenge arrives when the light collected by the sensor to record an image is less, not enough

from the street light.

If the imaging part is not su�cient, the character recognition technique will also not be

e�cient. There are several economic challenges. Computational ghost imaging helps in this

situation, where an image is built using a scanning mask and a high-e�cient single-pixel detec-

tor. The scanning mask strategically collects light from several parts of the object, providing

spatial information to the intensity recorded by the single-pixel detector, which speeds up re-

construction times. Further, the machine learning algorithm using a neural network enhances

the prediction of the object recognized after each measurement. Thereby reducing the image

reconstruction time by reducing the number of measurements needed.

For this Summer Internship Program 2023 PRL, we combined two techniques of computa-

tional ghost imaging and machine learning to identify the object in e↵ectively less amount of

time. The machine learning algorithms in a two-step approach – training the model and testing

the image. We harnessed the power of supervised machine learning algorithms to reduce the

number of measurements required to identify the object. In our case, we used the alphabets

(A-Z) and 0-9 as our objects. Our method enhances the recognition algorithm to predict the

confidence level of object recognition after each measurement.

This report is organized as follows. The two imaging methods are discussed in Section 2,

computational ghost imaging in Section 3, and several scanning methods in Section 4. The

various aspects related to machine learning are in Section 5. We discuss the results obtained

from the project in Section 6. We finally conclude in Section 7 and present the future outlook

too.

2 Imaging Methods

Any 2D image has two parts – 2D space and their corresponding intensities. This information

is captured conventionally using a 2D array of detectors, like a 2D sensor of any camera. The

light from the object reaches the sensor using two lenses, the first being the collection lens and

the other being the condenser lens. The spatial intensity distribution of the image reaches the

2D array of detectors and accurately forms the image. This imaging method is depicted in

Figure 1a). The advantage of this method is that the complete image is recorded in one frame

of necessary exposure time. The disadvantage being the 2D sensors doesn’t function well in

low-light applications, due to low gain and high cross-talk in the readout process.

Considering a situation where the sensor is only a bucket/single-pixel detector. These

detectors have conventionally high detection e�ciency, which make it suitable for low-light

applications. In this situation, the sensor cannot obtain spatial information. In this situation,

a scanning mask is placed between the two lenses. The correlation between the total light
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Figure 1: Two types of imaging method. a) Imaging with a 2D detector, b) Imaging with a

single pixel detector and using mask.

collected by the sensor and the scanning mask provides the image of an object. This imaging

method is depicted in Figure 1b). This method has the advantage that a single-pixel detector

can also obtain an image. The disadvantage is that the image will always be flawed due to the

noise in the single pixel’s intensity. Several scanning techniques are presented in section 4.

In this report, we focused mainly on the imaging using single pixel detectors. This method

will find applications in quantum sensing where the source has low intensity, of the order of few

thousand photons/second. This method is commonly known as Computational ghost imaging,

leading to quantum ghost imaging, and we will focus mainly on this topic.

3 Computational ghost imaging

Ghost imaging is an alternative image acquisition technique that uses a correlation between

a spatial mask, and the photons/intensity collected using a single-pixel detector. It was first

demonstrated as a quantum entanglement phenomenon generated from the non-linear spon-

taneous parametric down-conversion (SPDC) process. But it is also shown that classical cor-

relation can similarly be used in a ghost imaging experiment. It was thought to produce

higher-quality images, but it has been demonstrated both in quantum and classical cases, and

images of almost identical quality are produced. As an advantage, using quantum light allows

for low light levels imaging applications where it is beneficial to reduce the risk of photo-damage

to light-sensitive matter. The primary aim of ghost imaging is to reconstruct the image with

a more e�cient higher resolution, and the time taken for it should be minimal. Still, ghost

imaging faces ine�cient imaging speed since imaging speed depends on many measurements

needed to form an image that works on quadratic scales with the required resolution (pixel2),

which limits getting a higher resolution image. Traditionally, the image is reconstructed as a

2



linear combination of all masks weighted by the coincidences and is expressed as

IN =
NX

i=1

ciMi, (1)

where IN is the image after N measurements, ci and Mi are the intensity recorded by the

single-pixel detector and the corresponding mask for the ith measurement, respectively.

4 Scanning Methods

The various scanning methods, not limited to, are shown in Figure 2 and discussed below. The

dark spots have no transmission, while white spots full transmit the light. This is how, the

spatial information is transferred to the single-pixel detectors.

a) Scanning array in raster 
scan. One-by-one every pixel 
gets scanned

c) Multiple random pixel scan 
method of mask where pixel 
randomly gets canned

d) Scanned by Walsh function 
mask. The entries of the matrix 
are ±1, and its rows/columns 
are orthogonal

b) Single random pixel scan 
method of mask where pixel 
randomly gets canned

Figure 2: Four types of masks having 4⇥4 pixels , not limited to, used for scanning: Raster

scan, Single random pixel scan, multiple random pixels scan, and Walsh matrix scan. Only

three combinations of each case is shown for reference.

a) Raster scan: This is a common technique used in imaging, where a beam of light scans

across the object, point by point, horizontally and then then vertically. The intensity of

the transmitted light from the corresponding mask is measured, producing a 2D image

of the object. The complete image can be formed only after scanning a pixel2 number of

measurements.

b) Single random pixel scan: This scanning method involves using a mask with only

one random pixel transmitting light. An approximate image can be formed in fewer

measurements; however, an image with complete contrast may not be obtained even in

many measurements.
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c) Multiple random pixels scan: This scanning has a random distribution of transparent

and opaque areas, which allows for obtaining the intensity. The ratio of transmitting and

blocking pixels can be manipulated depending on the application. An approximate image

can be formed in fewer measurements; however, complete contrast may not be obtained

even in many measurements.

d) Walsh matrix scan: This is a complex scanning method. TheWalsh matrix, a Hadamard

matrix, is a square matrix with either ±1 entries. This matrix is used as a scanning func-

tion in a defined manner. Using the Walsh matrix as a scanning mask can increase the

quality of the obtained images and the e�ciency of the scanning process.

In terms of the experiments, these masks and methods can be used in various combinations.

For instance, a random mask can provide broad, non-specific information about the object,

while raster scanning may allow for imaging with higher accuracy. The Walsh matrix scan,

being the most complex method, could be used for more advanced imaging tasks where the

highest resolution or specific spatial information about the object is required. A sample image

of character ‘1’ is shown in Figure 3.

Figure 3: A sample image of ‘1’ constructed using the raster scan method with no noise. The

image is highly pixelated, however the character ‘1’ is easily identified.

As we are now aware of the advantages of the ghost imaging technique and the project

requires character recognition, we employed a machine learning algorithm to identify it sooner,

i.e., minimum value of N in Eq. 1. This would help us to perform a minimum number of

measurements with noise and obtain the object accurately.

5 Machine Learning

Machine learning is the science and art of programming computers s they can learn from the

data. In a more engineering-oriented way, a computer program is said to learn from experience

E for some task T and some performance measure P , if its performance on T , as measured by

P , and improves E (by Tom Mitchell. 1997). Figure 4 shows a schematic of the basic machine

learning approach.

In summary, we can write that the technique of machine learning is a great use for
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Figure 4: A schematic of machine learning approach.

• problems for which existing solutions require lot of hand-tuning or long lists of rules: one

Machine Learning algorithm can often simplify code and perform better

• complex problems for which there is no good solution at all using a traditional approach:

the best Machine learning techniques can find a solution

• fluctuating environments: a machine learning system can adapt to new data

• getting insights about complex problems and large amounts of data

5.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a type of artificial neural network designed to

process data with a grid-like topology, such as an image. CNNs use three basic types of layers

convolutional layers, pooling layers, and fully connected layers refer to Figure 5. Neurons in the

first convolutional layer are not connected to every pixel in the input image, but only to pixels

in their receptive fields. In turn, each neuron in the second convolutional layer is connected only

to neurons located within a small rectangle in the first layer. Also, neurons in a convolutional

layer are not connected to every single output of the previous layer, but only to a subset of

them, defined by the dimensions of the convolutional kernel. This substantially reduces the

number of parameters and helps the network to focus on localized features.

This architecture allows the network to concentrate on small low-level features in the first

hidden layer, assemble them into larger higher-level features in the next hidden layer, and so

on. This hierarchical structure is common in real-world images, which is one of the reasons

why CNNs work so well for image recognition.

5.2 Model architecture of VGG16

We used the VGG16 (Visual Graphics Group 16) model for image classification tasks. VGG16

is a pre-trained model as the base model with 16 layers (13 convolution and 3 fully connected

layers). It is widely used in the image net scale visual recognition using a pre-trained model,

allowing us to use the pre-existing architecture and its trained weights to train our model
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Figure 5: CNN layers with rectangular local receptive fields.

further, thereby reducing training time considerably. After the base model, the GlobalAver-

agePooling2D layer is added to average the spatial information, thus reducing the number of

parameters in the model. Dense layers are added, fully connected, and responsible for feature

extraction. In the subsequent layers, dropouts are added to randomly set a fraction of the input

units to ‘0’ at each update during training time, which helps to avoid over-fitting. We use the

softmax activation function in the output layer, which is ideal for multi-class classification.

Figure 6: Flowchart for VGG16 CNN model used in this project.

Figure 6 shows the steps involved in training using the VGG16 model. The first step is

to collect a data set. This data set should include images of as many di↵erent types of game

buttons as possible. The images should be properly labeled with the kind of button they

represent. Once the data set is generated, it needs to be pre-processed. This involves resizing

the images to a standard size and normalizing the pixel values. The pre-processed images are

then used to train the VGG16 model. The VGG16 model is a convolution neural network that

consists of 16 layers. The first 13 layers of the model are convolutional layers, which extract

features from the images. The last three layers of the model are fully connected layers, which

classify the images into di↵erent classes. The VGG16 model is trained using a technique called

back-propagation. Back-propagation is an iterative algorithm that adjusts the model weights

to minimize the loss function, which measures how well the model performs. Once the VGG16
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model is trained, it can be used to classify new images. The new images are then passed through

the model, and the output is used to determine the class represented in the image.

6 Results and discussion

In this project, we applied the convolutional neural network model for image classification and

recognition using the Keras library and VGG16 base model on the ghost images. The target

is to minimize the value of N in Eq. 1. The various parts of the results are presented in the

following subsections.

For this project, we used 36 alphanumeric characters of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}, and the resolution of the

images are fixed for 50⇥50 pixels. Before preforming the experiment, using the parameters from

the experiment, and using the computational resources, we wrote the Python code to generate

the possible images for both training and model and subsequently for testing the images and

study their performance. All the Python codes are included in the appendix of this report.

6.1 Image generation & exploration

For training purposes, we generated 50⇥50 pixel for N = 100 images for each class. ’ObjectIm-

age’ 2D array is created with a clear representation of characters at the center with 25% noise

(worst case scenario from experiment). The generated text character is converted to grayscale

images, which is then normalized. We used the scanning mask type c) Multiple random pixels

scan, as discussed earlier. The probability chosen for blocking:transmitting pixel is 95%. We

trained the model using this image-set.

In testing purposes and to find the performance of the model, we generated only N = 100

images for each class with six possible orientations – normal, rotation by 90o, rotation by 180o,

rotation by 270o, horizontal flip and vertical flip. The plan was to test the model with all these

orientations.

6.2 Training the model

The model is trained using Adam optimizer. The adaptive learning rate approach helps in

training the model e�ciently. Since dealing with multi-class classification, we have used cat-

egorical cross entropy as a loss function. The batch size of 32 from our ImageDataGenerator

was used, which signifies the model updates weights after training on 32 samples. The ‘fit’

method then trains the model for a fixed number of epochs by iterating through the complete

image-set. The steps per epoch ensures the network sees all samples in each training epoch.

Here we have observed that when we increase our epochs so that our model gets more iterations

and time it is su�ciently gets more trained and it’s performance gets enhanced on predicting

the probability classes.

Here in our project for generating results, we are giving training data images for our model

total of 3600 images, we are training our model for simple orientation images for 50 epochs.

We have a total of 36 classes, each containing 100 images. The total time taken for training
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over 36 classes on 3600 images of 50⇥50 pixel size is ⇡30 minutes for 50 Epochs. Some of the

images for some classes for training are shown in Figure 7.

a) Training Data for class ‘A’ b) Training Data for class ‘2’

c) Training Data for class ‘W’ d) Training Data for class ‘O’

e) Training Data for class ‘6’ f) Training Data for class ‘0’

Figure 7: Some training images for few classes.

The model was trained without error, and the loss and accuracy over epochs were plotted and

analyzed in Figure 8. Model accuracy improved over time while loss decreased, indicative of the

model learning the underlying patterns in the training data. The model was saved and reloaded

to confirm its integrity and usability for future predictions. The model used demonstrate the

ability to classify images based on their contents accurately. The training and loss curve for

over 500 epochs which took around 5.45 hours to run with accuracy of approximately 75%.

6.3 Testing images using the trained model

While testing our model, we tested it on for up to 50% of noise, and the results got slightly

distorte, but it is satisfactory. Obviously, if we increase the noise on our testing images, it could
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a) b)

c)

Figure 8: Model accuracy a) and model loss b) vs epoch, with accuracy results and total time

take for training model c).

be challenging to recognize images since we had trained our model with 25% of noise. Here we

are taking into consideration of di↵usive noise in our images.

Using the trained model for 50 epochs on 25% noise, we analyzed the testing image set. The

testing image set is prepared in six possible orientations. Figure 9 shows the complete set of six

orientations for the class ‘J’. For 50⇥50 pixel image for every 36 classes having six orientations,

we have tested our model in 21600 images. We are testing our images for di↵erent orientations

because we are analyzing at what level our model has been trained by applying rotation and

flip in ImageDataGenerator function in our codes. When we tested these 36 classes of images

with di↵erent noises up to 50% noise. The model could predict the class due to the robust

testing model, even if the information is lost due to larger noise. The testing time for more

noise-containing images is slightly longer as our trained model finds complexity in analyzing

these noisy images. To maintain the higher e�ciency and uniform nature, we had to keep the

aspect ratio consistent, 50⇥50 pixel. Also, while loading the images, they are re-scaled by

dividing the pixel value by 255.

6.4 Character recognition

Some of the characters in our class set are similar to our trained model, like ’6’ and ’9’, ’1’ and ’I’,

’O’ and ’0’, ’N’ and flipped ’Z’, and others. However, using a suitable font can make it possible

for the model to di↵erentiate between them successfully. Figure 10 shows the probability

distribution for various orientations of class ‘2’, ‘6’, ‘A’, and ‘V’. The bright white line in

increasing order shows that the images on which we are testing our model initially are not

fully constructed. Over the number of iterations, the images attain their clear picture, as can

also be seen from Figure 9. For class ’2’, we can see some other probability results are also
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a) Test Data for class ‘J’ for normal orientation b) Test Data for class ‘J’ for 90◦ orientation

c) Test Data for class ‘J’ for horizontal flip d) Test Data for class ‘J’ for vertical flip

e) Test Data for class ‘J’ for 180◦ rotation f) Test Data for class ‘J’ for 270◦ rotation

Figure 9: Some testing images for ‘J’ classes in various orientations.

coming because our model is instigating the superposition with ‘S’. This superposition of other

probability images is also coming for ‘6’ and ‘G’. Since the learning rate depends on how we

train our data, we are training our model with 25% of noise and testing it on 25% of noise

images. The increase in epochs of the model will help in reducing the superpositions for image

recognition. The total time taken for testing 36 classes, each containing six orientations and a

total of 21600 images, is ⇡19 minutes.
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(a) Image probability prediction for class ‘2’ for 50 epochs (b) Image probability prediction for class ‘6’ for 50 epochs

(c) Image probability prediction for class ‘A’ for 50 epochs (d) Image probability for class ‘V’ for 50 epochs

Figure 10: Probability plot. Y-axis represent the class and X-axis represent the number of

images.

7 Conclusion and future outlook

In the future, we plan to test our pre-trained models to see if we can achieve better performance

with more pixel images, like 100⇥100. We also plan to fine-tune our model further by adjusting

parameters such as learning rate, batch size, and the number of epochs to boost its accuracy

and e�ciency. Image pre-processing and feature extraction techniques could also be explored to

optimize the model’s performance. We are also considering ways to integrate this model into a

real-time application and reduce the time taken; I will modify these codes, which are compatible

to run on PRL VIKRAM-1000 HPC (high-performance computing) for faster results. This

would demonstrate our work’s practical usefulness and generate valuable user feedback for

further improvements.

In summary, this image classification project has been a great learning experience in ap-

plying deep learning techniques to real-world data. With each step and improvement to our

model, we are getting closer to a fully functional image classifier with the potential to im-

pact various sectors significantly. The project has relevant applications across several domains,

from autonomous vehicle systems and object-tracking surveillance systems to medical imaging

diagnostics and automated image tagging in social media platforms.
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This section contains Python codes developed during this project.

9.1 Code for generating training images
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1 # Here this code generates 50 cross 50 pixel of 100 images in a specific

directory for all the 36 classes which we needed. Here we uses

Hadamard function for generating random pixel images which is replica

of hadamard mask which we used in our experiment.

2

3 import numpy as np

4 from PIL import Image , ImageDraw , ImageFont

5 import os

6 def CreateObject(sz , objj):

7 img = Image.new(’RGB’, (sz , sz), color=(0, 0, 0))

8 d = ImageDraw.Draw(img)

9 fnt = ImageFont.truetype(’42.ttf’, 40)

10 d.text ((12, 0), objj , font=fnt , fill =(255 , 255, 255))

11 gray = img.convert(’L’)

12 npdata = np.array(gray)

13 npdata1 = npdata / np.amax(npdata)

14 return npdata1

15 def HadamardMatrixDefine(sz , prob):

16 num0 = int(prob * sz * sz)

17 num1 = sz * sz - num0

18 Array0 = np.zeros(num0)

19 Array1 = np.ones(num1)

20 Array01 = np.concatenate ((Array0 , Array1))

21 return Array01

22 def HadamardMatrixShuffle(SA , sz):

23 np.random.shuffle(SA)

24 SM = np.reshape(SA , (sz , sz))

25 return SM

26 def main():

27 Size = 50

28 prob01 = 0.95

29 classes = "0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 base_dir = "kk"

31 for c in classes:

32 ObjectImage = CreateObject(Size , str(c))

33 dir_path = os.path.join(base_dir , str(c))

34 if not os.path.exists(dir_path):

35 os.makedirs(dir_path)

36 RandomArray = HadamardMatrixDefine(Size , prob01)

37 GhostImage = np.zeros ((Size , Size))

38 for i in range (100):

39 RandomMask = HadamardMatrixShuffle(RandomArray , Size)

40 Correlation = ObjectImage * RandomMask

41 CC = sum(sum(Correlation)) * np.random.rand() * 1.25

42 GhostImage = GhostImage + CC * Correlation

43 GhostImage_to_save = (GhostImage) / (np.amax(np.amax(GhostImage)

)) * 255

44 GhostImage_to_save = GhostImage_to_save.astype(np.uint8)

45 img = Image.fromarray(GhostImage_to_save)

46 img = img.convert(’L’)

47 img.save(os.path.join(dir_path , ’{}.bmp’.format(i)))

48 if __name__ == "__main__":

49 main()

13



9.2 Code for generating testing images

1 #This coede is used for generating images for 50 cross 50 pixel size in six

different orientation which is going to used in for testing and

generating the probability prediction on that.

2

3 import numpy as np

4 from PIL import Image , ImageDraw , ImageFont

5 import os

6 def CreateObject(sz , objj):

7 img = Image.new(’RGB’, (sz , sz), color=(0, 0, 0))

8 d = ImageDraw.Draw(img)

9 fnt = ImageFont.truetype(’42.ttf’, 40)

10 d.text ((12, 0), objj , font=fnt , fill =(255 , 255, 255))

11 gray = img.convert(’L’)

12 npdata = np.array(gray)

13 npdata1 = npdata / np.amax(npdata)

14 return npdata1

15 def HadamardMatrixDefine(sz , prob):

16 num0 = int(prob * sz * sz)

17 num1 = sz * sz - num0

18 Array0 = np.zeros(num0)

19 Array1 = np.ones(num1)

20 Array01 = np.concatenate ((Array0 , Array1))

21 return Array01

22 def HadamardMatrixShuffle(SA , sz):

23 np.random.shuffle(SA)

24 SM = np.reshape(SA , (sz , sz))

25 return SM

26 def main():

27 Size = 100

28 prob01 = 0.95

29 classes = "0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ"

30 base_dir = "50 cross50Test"

31 transformations = {"00": lambda img: img ,

32 "01": lambda img: img.transpose(Image.FLIP_LEFT_RIGHT

),

33 "02": lambda img: img.rotate (-90),

34 "03": lambda img: img.rotate (90),

35 "04": lambda img: img.rotate (180) ,

36 "05": lambda img: img.transpose(Image.TRANSPOSE)}

37 for c in classes:

38 ObjectImage = CreateObject(Size , str(c))

39 for trans_id , trans_func in transformations.items():

40 dir_path = os.path.join(base_dir , str(c), trans_id)

41 if not os.path.exists(dir_path):

42 os.makedirs(dir_path)

43 RandomArray = HadamardMatrixDefine(Size , prob01)

44 GhostImage = np.zeros ((Size , Size))

45 for i in range (100):

46 RandomMask = HadamardMatrixShuffle(RandomArray , Size)

47 Correlation = ObjectImage * RandomMask

48 CC = sum(sum(Correlation)) * np.random.rand() * 1.25
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49 GhostImage = GhostImage + CC * Correlation

50 GhostImage_to_save = (GhostImage) / (np.amax(np.amax(

GhostImage))) * 255

51 GhostImage_to_save = GhostImage_to_save.astype(np.uint8)

52 img = Image.fromarray(GhostImage_to_save)

53 img = img.convert(’L’)

54 img_transformed = trans_func(img)

55 img_transformed.save(os.path.join(dir_path , ’{}.bmp’.format(

i)))

56 if __name__ == "__main__":

57 main()

9.3 Code for training the model

1 # This code is for 50 epochs for training the model over 50 cross 50 pixel

image size. In which we have used VGG16 transfer leraning model with

CNN and Adam optimizer with Keras and tensorflow environment.

2 import os

3 import numpy as np

4 import matplotlib.pyplot as plt

5 from keras.applications.vgg16 import VGG16

6 from keras.models import Sequential

7 from keras.layers import Dense , Dropout , Flatten

8 from keras.layers import Conv2D , MaxPooling2D

9 from keras.preprocessing.image import ImageDataGenerator

10 from keras.optimizers import Adam

11 from keras.models import load_model

12 from keras.models import Model

13 from keras.layers import Dense , GlobalAveragePooling2D

14 from tensorflow.keras.preprocessing import image

15 from PIL import Image

16 import time

17 def check_image_size(path , size =(50, 50)):

18 img = Image.open(path)

19 if img.size != size:

20 print(f"Incorrect size: {path}")

21 return False

22 else:

23 return True

24 def check_image_with_pil(path):

25 try:

26 img = Image.open(path)

27 return True

28 except:

29 return False

30 def remove_corrupted_images(dir):

31 for subdir , dirs , files in os.walk(dir):

32 for file in files:

33 file_path = os.path.join(subdir , file)

34 if not check_image_with_pil(file_path):

35 print(f"Removing corrupted image: {file_path}")

36 os.remove(file_path)
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37 elif not check_image_size(file_path):

38 print(f"Removing incorrectly sized image: {file_path}")

39 os.remove(file_path)

40 train_directory = ’/home/qst -lab/Downloads/Revised_work/Downloads/

Revised_work/kk’

41 test_directory = ’/home/qst -lab/Downloads/Revised_work/Test_Image ’

42 remove_corrupted_images(train_directory)

43 remove_corrupted_images(test_directory)

44 train_datagen = ImageDataGenerator(

45 rescale =1./255 ,

46 rotation_range =180,

47 zoom_range =0.15 ,

48 width_shift_range =0.2,

49 height_shift_range =0.2,

50 shear_range =0.15 ,

51 horizontal_flip=True ,

52 vertical_flip=True ,

53 fill_mode="nearest"

54 )

55 training_set = train_datagen.flow_from_directory(

56 train_directory ,

57 target_size =(50, 50),

58 batch_size =32,

59 class_mode=’categorical ’

60 )

61 test_datagen = ImageDataGenerator(rescale =1./255)

62 test_set = test_datagen.flow_from_directory(

63 test_directory ,

64 target_size =(50, 50),

65 batch_size =32,

66 class_mode=’categorical ’

67 )

68 base_model = VGG16(weights="imagenet", include_top=False , input_shape =(50,

50, 3))

69 for layer in base_model.layers:

70 layer.trainable = False

71 x = base_model.output

72 x = GlobalAveragePooling2D ()(x)

73 x = Dense (1024 , activation="relu")(x)

74 x = Dropout (0.5)(x)

75 x = Dense (512, activation=’relu’)(x)

76 x = Dropout (0.5)(x)

77 predictions = Dense(training_set.num_classes , activation=’softmax ’)(x)

78 model = Model(inputs=base_model.input , outputs=predictions)

79 model.compile(optimizer=Adam(), loss=’categorical_crossentropy ’, metrics =[’

accuracy ’])

80 print("Starting training.")

81 start = time.time()

82 history = model.fit(training_set , steps_per_epoch=len(training_set), epochs

=50)

83 end = time.time()

84 total_time = end - start

85 print(f"Total time taken to run all epochs: {total_time} seconds")
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86 test_loss , test_accuracy = model.evaluate(test_set)

87 print(f"Test accuracy: {test_accuracy}")

88 print(f"Test loss: {test_loss}")

89 plt.figure(figsize =(12, 4))

90 plt.subplot(1, 2, 1)

91 plt.plot(history.history[’accuracy ’])

92 plt.title(’Model accuracy ’)

93 plt.ylabel(’Accuracy ’)

94 plt.xlabel(’Epoch’)

95 plt.legend ([’Train’], loc=’upper left’)

96 plt.subplot(1, 2, 2)

97 plt.plot(history.history[’loss’])

98 plt.title(’Model loss’)

99 plt.ylabel(’Loss’)

100 plt.xlabel(’Epoch’)

101 plt.legend ([’Train’], loc=’upper right’)

102 plt.show()

103 model.save(’my_model_VGG16.h5’)

104 model = load_model(’my_model_VGG16.h5’)

105 print("Evaluating model.")

106 loss , accuracy = model.evaluate(test_set)

107 print(f"Test accuracy: {accuracy}")

108 print(f"Test loss: {loss}")

109 class_labels = training_set.class_indices

110 class_labels = {v: k for k, v in class_labels.items()}

111 def predict_possible_labels(img_path , top_n =2):

112 img = image.load_img(img_path , target_size =(50, 50))

113 x = image.img_to_array(img)

114 x = np.expand_dims(x, axis =0)

115 images = np.vstack ([x])

116 images /= 255.

117 probs = model.predict(images , batch_size =10)

118 pred_probs_indices = np.argsort(probs [0])[-top_n :][:: -1]

119 pred_labels_and_probs = [( class_labels[i], probs [0][i]) for i in

pred_probs_indices]

120 return pred_labels_and_probs

9.4 Code for testing the imaging and saving the probabilities in .txt

file

1 # This code generates a .txt file which is reffering for prediction results

probability of 21600 images on a pretrained model which is saved in .

h5 format.

2 from keras.models import load_model

3 from tensorflow.keras.preprocessing import image

4 import numpy as np

5 import os

6 import time

7 def predict_all_labels(img_path):

8 img = image.load_img(img_path , target_size =(50, 50))

9 x = image.img_to_array(img)
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10 x = np.expand_dims(x, axis =0)

11 images = np.vstack ([x])

12 images /= 255.

13 probs = model.predict(images , batch_size =10) [0]

14 return probs

15 def sort_func(folder_name):

16 try:

17 return int(folder_name)

18 except ValueError:

19 return 1000000 + ord(folder_name)

20 model_path = ’my_model_VGG16.h5’

21 if not os.path.isfile(model_path):

22 print(f’Model file at "{ model_path }" does not exist or is not a file.’)

23 exit (1)

24 model = load_model(’my_model_VGG16.h5’)

25 base_img_dir = ’/home/qst -lab/Downloads/Step_1_Work /50 cross50Test ’

26 if not os.path.isdir(base_img_dir):

27 print(f’Base image directory "{ base_img_dir }" does not exist or is not a

directory.’)

28 exit (1)

29 results_file = ’Step_1_Work_for__VGG16_Revised_Train_50_epoch_noise25%

_Test_25%_without_rounding_off.txt’

30 start = time.time()

31 with open(results_file , ’w’) as f:

32 for folder_name in sorted(os.listdir(base_img_dir), key=sort_func):

33 main_folder_path = os.path.join(base_img_dir , folder_name)

34 print(f’Accessing folder: {folder_name}’)

35 if os.path.isdir(main_folder_path):

36 order = [’00’, ’01’, ’02’, ’03’, ’04’, ’05’]

37 for subfolder_name in order:

38 subfolder_path = os.path.join(main_folder_path ,

subfolder_name)

39 print(f’Accessing subfolder: {subfolder_name}’)

40 if os.path.isdir(subfolder_path):

41 for img_file in sorted(os.listdir(subfolder_path), key=

lambda x: int(os.path.splitext(x)[0])):

42 img_path = os.path.join(subfolder_path , img_file)

43 if img_path.endswith(’.bmp’):

44 print(f’Predicting for image: {img_file}’)

45 predictions = predict_all_labels(img_path)

46 predictions_str_list = [str(pred) for pred in

predictions]

47 predictions_text = ",".join(predictions_str_list

)

48 f.write(f’{folder_name },{ subfolder_name },{

img_file},{ predictions_text }\n’)

49 end = time.time()

50 total_time = end - start

51 print(f’Predictions have been written to {results_file }.’)

52 print(f’Total execution time: {total_time} seconds.’)
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9.5 Code for reading the .txt file and generating the probability

predictions in .png format

1 # This codes analyses the .txt file and generates the probabilty into images

results as shown in Figure 9.

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from collections import defaultdict

5 def extract_data(line):

6 data = line.split(’,’)

7 try:

8 class_label = int(data [0])

9 except ValueError:

10 class_label = ord(data [0]) - 55

11 folder_label = data [1]

12 probabilities = np.array(data [3:], dtype=float)

13 return class_label , folder_label , probabilities

14 def create_plot(probability_matrix , class_label , folder_label , path_to_save)

:

15 plt.figure(figsize =(100 ,50))

16 plt.imshow(probability_matrix , cmap=’gray’, aspect=’auto’)

17 class_labels = [str(i) for i in range (10)]+list(’

ABCDEFGHIJKLMNOPQRSTUVWXYZ ’)

18 plt.xlabel(’Image Number ’,fontsize =90)

19 plt.ylabel(’Class Label’,fontsize =90)

20 plt.xticks(np.arange(0, probability_matrix.shape[1], step =10),fontsize

=60)

21 plt.yticks(np.arange(0, probability_matrix.shape[0], step =1), labels=

class_labels ,fontsize =60)

22 plt.tight_layout ()

23 save_path = f’{path_to_save }/plot_{class_label}_{folder_label }.png’

24 plt.savefig(save_path)

25 plt.close()

26 data_dict = defaultdict(list)

27 with open(’Step_1_Work__VGG16_Revised_Train_50_epoch_noise25%_Test_25%

_without_rounding_off.txt’, ’r’) as file:

28 for line in file:

29 class_label , folder_label , probabilities = extract_data(line)

30 data_dict [( class_label , folder_label)]. append(probabilities)

31 path_to_save = "/home/qst -lab/Downloads/Step_1_Work/Raw_Images_3"

32 for (class_label , folder_label), probabilities in data_dict.items():

33 probability_matrix = np.array(probabilities).T

34 create_plot(probability_matrix , class_label , folder_label , path_to_save)

********************

19


